To nie film, ale rzeczywistość. Medycyna od dawna przekracza granice wyznaczane przez twórców science fiction. Teraz zrobiła to po raz kolejny. Dzięki ultradźwiękom będzie można drukować wewnątrz ludzkiego ciała.
Ultradźwięki pozwalają drukować narządy wewnątrz organizmu
Naukowcy twierdzą, że nowego rodzaju tusz utwardza się pod działaniem skoncentrowanej wiązki ultradźwięków. Z jego pomocą będzie można w przyszłości naprawiać różne struktury w organizmie: od kości, po zastawki serca.
Zespół z amerykańskiego Duke University i Harvard Medical School zaprezentował właśnie biokompatybilny tusz, który zastyga, tworząc różne trójwymiarowe kształty pod wpływem fal ultradźwiękowych. Ponieważ reaguje na dźwięk, można na niego oddziaływać nawet wewnątrz głęboko ukrytych tkanek. Metoda nosi nazwę „deep-penetrating acoustic volumetric printing". DVAP to objętościowy druk z pomocą penetrujących głęboko fal akustycznych. Bazuje ona na zjawisku sono-termicznym, w którym fale akustyczne powodują wzrost temperatury w danym materiale.
- Ultradźwięki mogą wnikać ponad 100 razy głębiej niż światło, choć nadal można nimi sterować w przestrzeni. Możemy więc dotrzeć do różnych tkanek, np. kości czy narządów, z odpowiednią precyzją, której nie zapewniał druk oparty na świetle – mówi prof. Junjie Yao, autor pracy opublikowanej w czasopiśmie "Science".
Metoda wstrzykiwania specjalnego tuszu
Tusz nazwany sono-ink łączy w sobie hydrożele, specjalne mikrocząstki i cząsteczki chemiczne, reagujące na ultradźwięki. Sterując nimi, można uzyskiwać różne kształty – od heksagonalnego rusztowania przypominającego właściwościami kość, po hydrożelowe baloniki. Skład tuszu można zmieniać, tak aby jak najlepiej pasował do danego zastosowania. Materiał może stać się np. twardy, podobnie jak kość, albo np. ulegać biodegradacji.
- Sam tusz ma postać lepkiej cieczy, więc można go łatwo wstrzyknąć w docelowe miejsce. W czasie przesuwania w jego stronę ultradźwiękowej sondy składniki materiału łączą się ze sobą i tusz twardnieje – wyjaśnia twórca metody, prof. Shrike Zhang.
Wynalazek przeszedł już próbę na naturalnym organie. Korzystający z niego w laboratorium naukowcy zamknęli uszkodzoną część serca kozy. Implant scalił się z narządem i był na tyle elastyczny, że wytrzymał ruch naśladujący naturalne bicie serca. Równie dobrze przeszedł test na kości kurczęcia.
Badacze pokazali, też, że metoda może posłużyć do podawania leków w odpowiednie miejsce. Zawierający wybrany farmaceutyk tusz wprowadzili do fragmentu wątroby. Po utwardzeniu materiał powoli uwalniał lek.
Wiele potencjalnych zastosowań techniki druku 3D
- Nadal wiele dzieli nas od wprowadzenia tego narzędzia do klinik, ale dotychczasowe testy potwierdziły potencjał tej technologii. Jesteśmy bardzo podekscytowani tym, dokąd może nas ona zaprowadzić – stwierdza prof. Zhang.
- Ponieważ możemy drukować przez tkanki, widzimy wiele potencjalnych zastosowań tej techniki w chirurgii i terapii, które tradycyjnie wiązały się z bardzo inwazyjnymi i metodami. Praca ta otwiera fascynującą nową drogę w świecie druku 3D i z niecierpliwością czekamy, aby wspólnie zgłębić potencjał tego narzędzia - dodaje prof. Yao.
Przypomnijmy, że niedawno naukowcy z Oksfordu opracowali metodę druku 3D, która może pomóc w naprawie uszkodzeń mózgu. Uszkodzenia mózgu, spowodowane na przykład urazem, udarem lub będące skutkiem ubocznym operacyjnego usunięcia guza mózgu zwykle skutkują znacznym uszkodzeniem kory mózgowej (zewnętrznej warstwy mózgu). Prowadzi to do trudności w funkcjonowaniu poznawczym, poruszaniu się i komunikacji. Naukowcy udoskonalają tę technikę druku kropelkowego, aby stworzyć złożone, wielowarstwowe tkanki kory mózgowej, które bardziej realistycznie naśladują architekturę ludzkiego mózgu. Oprócz ich potencjału w zakresie naprawy uszkodzeń mózgu, te zmodyfikowane tkanki mogą zostać wykorzystane w ocenie leków i badaniach rozwoju mózgu.
Tomasz Wypych
Czytaj także:
Inne tematy w dziale Technologie